Светодиодные фонари и световые приборы. Всё о светотехнике.
Изображения Дневники Группы Поиск
Вернуться   Форум FONAREVKA.RU Лаборатория Источники света и оптические системы
Расширенный поиск
Забыли пароль? Регистрация

  • О нашем проекте
  • Светотехника и световые приборы
  • Правила форума
Проект FONAREVKA.RU специализируется на предоставлении всей необходимой информации по светотехнике:

— светодиодные фонари;
— различные источники питания;
— разнообразные зарядные устройства;
— освещение помещений и наружное освещение;
— световые приборы для личного, пассажирского и грузового транспорта;
— специальные световые приборы для медицины, для растений, для аквариумов, для террариумов, а также аварийно-сигнальные световые приборы;
— альтернативные источники света;
— лазеры и лазерная техника.

Если у вас есть вопросы по выбору фонарей, аккумуляторов и зарядных устройств ознакомьтесь с FAQ от наших экспертов:

F.A.Q. по выбору фонарей различных типов;
F.A.Q. по выбору аккумуляторов;
F.A.Q. по выбору зарядных устройств.
Ответ  Создать новую тему
Просмотров в теме 13074   Ответов в теме 2   Подписчиков на тему 1   Добавили в закладки 0
Опции темы Поиск в этой теме
Старый 14.10.2010, 02:15 Автор темы   1
Администратор
 
Аватар для Admin
 
Регистрация: 17.05.2010
Адрес: Москва
Сообщений: 18904
Сказал(а) спасибо: 4325
Поблагодарили: 10615 раз(а) в 2535 сообщениях

По умолчанию Расчет печатных плат для светодиодов CREE серий XP и MX

Одна из наиболее важных задач при разработке конструкции светодиодного светильника -отведение тепла от светодиодов, возникающее в процессе работы. Высокие рабочие температуры p-n переходов негативно воздействуют на характеристики светодиодов, в результате чего снижается светоотдача и срок службы. Для того чтобы правильно управлять этим теплом, в конкретных применениях следует придерживаться определенных правил проектирования, так как особенности работы светодиодных светильников принципиально отличаются от светильников на традиционных источниках света.
В данном материале излагается методика по разработке недорогих печатных плат, рассчитанных для работы с мощными светодиодами. Предлагается использование стеклотекстолита типа FR-4, который стоит дешевле, но имеет большее тепловое сопротивление по сравнению с печатными платами (ПП) на металлическом основании (MCPCB). Наличие металлизированных отверстий под светодиодами является способом дополнительного отвода тепла через стеклотекстолит к внешнему радиатору.
Эта технология доступна при использовании светодиодов серий XLamps благодаря фирменной отличительной особенности корпусов американской фирмы CREE — наличие электрически изолированной тепловой площадки (теплоотвода). Для некоторых проектов разработка плат на основе стеклотекстолита, с использованием тепловых отверстий, может обеспечить существенную экономию расходов, ускорить процесс изготовления прототипов, мелкосерийного и серийного производства.
Данный материал может послужить практическим руководством, так как опирается на основные принципы теплотехники , но не является догмой. Инженеры CREE написали этот материал для примерной оценки возможности применения платы из стеклотекстолита, и рекомендуют разработчикам пользоваться дополнительными материалами, чтобы оценить все параметры при практической разработке. Инженеры ООО «НЕОН-ЭК» перевели этот материал на русский язык для удобства русскоязычных разработчиков. Оригинал этого материала находится на сайте www.cree.com.

Корпуса светодиодов

Все типы корпусов светодиодов XLamps имеют электрически изолированые тепловые площадки для отвода тепла, которые можно припаять или закрепить на земляной проводник платы или на радиатор системы.(рис.1)

Нажмите на изображение для увеличения
Название: 1.jpg
Просмотров: 2419
Размер:	15.0 Кб
ID:	1393
рис. 1 - Корпус светодиода Xlamps

Тепло отводится от корпуса светодиода через контактные площадки и теплоотвод на печатную плату, которая должна быть смонтирована на радиаторе таким образом, чтобы отвести тепло от корпуса светодиода в окружающую среду.
В таблице 1 приведены типовые значения теплового сопротивления (от p-n перехода до точки пайки) для различных серий светодиодов XLamp.

Нажмите на изображение для увеличения
Название: 2.jpg
Просмотров: 2368
Размер:	29.8 Кб
ID:	1394
табл. 1 - типовые значения теплового сопротивления

Тепловые характеристики печатных плат из различных материалов

Стеклотекстолит типа FR-4 является одним из наиболее часто используемых материалов при изготовлении печатных плат, но имеет особенность - очень низкую теплопроводность.
Нажмите на изображение для увеличения
Название: 3.jpg
Просмотров: 2344
Размер:	28.9 Кб
ID:	1395
табл. 2 - Значения для ПП из FR-4

Используя значения теплопроводности в таблице 2 , значение общего теплового сопротивления для ПП на FR-4 может быть вычислено путем суммирования тепловых сопротивлений для каждого из слоев.
θPCB = θlayer1 + θlayer2 + θlayer3 ... + θlayerN
Для ПП, показанной на рисунке 2, тепловое сопротивление слоя определяется по формуле:
θlayer = l / (k x A)
где l-толщина слоя, k — коэффициент теплопроводности, А- площадь контактной площадки , отводящей тепло. Для платы из стеклотекстолита толщиной 1,6-мм в форме «Звезда» с площадью 270 мм 2 тепловое сопротивление составит примерно 30 º C / W .

Нажмите на изображение для увеличения
Название: 4.jpg
Просмотров: 2319
Размер:	12.8 Кб
ID:	1396
рис.2 - Структура ПП из FR-4

Для этого и всех последующих расчетов мы предполагаем, что используется теоретически идеальный радиатор, которой поддерживает температуру нижнего слоя платы 25 º C.
Следует также иметь в виду, что эти расчеты не учитывают размеры источника тепла, условия конвекции, и пр.
Теперь рассчитаем тепловое сопротивление аналогичной ПП на металлической основе MCPCB.
Обычная MCPCB имеет 4 слоя: паяльная маска, слой медной фольги, теплопроводящий диэлектрический слой, и металлическую основу, как показано на рис. 3.

Нажмите на изображение для увеличения
Название: 5.jpg
Просмотров: 2305
Размер:	11.8 Кб
ID:	1397
рис. 3 - Структура ПП на основе алюминия (MCPCB)

Наиболее часто в качестве металлической основы используется алюминий, реже используется сталь и медь.

Нажмите на изображение для увеличения
Название: 6.jpg
Просмотров: 781
Размер:	29.1 Кб
ID:	1398
табл. 3 Значения для ПП MCPCB


Используя значения теплопроводности слоев MCPCB из таблицы 3, можно рассчитать общее тепловое сопротивление ПП «Звезда» на MCPCB - оно составляет 0,2 º C / W

Проектирование тепловых отверстий

Давно известен способ улучшения теплопроводности платы из стеклотекстолита типа FR-4 - добавление металлизированных отверстий (рис.4), которые создаются путем сверления и последующего омеднения (рис.5). Эти отверстия могут быть использованы для электрического соединения между слоями фольги.

Нажмите на изображение для увеличения
Название: 7.jpg
Просмотров: 779
Размер:	12.7 Кб
ID:	1399 рис. 4 - Тепловые отверстия в ПП на FR-4
Нажмите на изображение для увеличения
Название: 8.jpg
Просмотров: 743
Размер:	11.8 Кб
ID:	1400 рис. 5 - Омедненное отверстие диаметром 0,3 мм


Добавочные отверстия уменьшают тепловое сопротивления платы из стеклотексолита FR-4 . Тепловое сопротивление одиночного отверстия можно рассчитать по ранее приведенной формуле,
θ = l / (k x A). Используя значения, приведенные в таблице 4, вычисляем сопротивление одиночного металлизированного отверстия Ø 0,6 мм:
(1.588 x 10-3) / (58 x ( π x (0.5 x 0.6 x 10-3)-2)) = 96.8 ºC/W.

Нажмите на изображение для увеличения
Название: 9.jpg
Просмотров: 811
Размер:	25.5 Кб
ID:	1401 табл. 4 - Значения для ПП из FR-4 с тепловыми отверстиями
Нажмите на изображение для увеличения
Название: 10.jpg
Просмотров: 776
Размер:	13.7 Кб
ID:	1402 рис.6 - Пример незаполненных отверстий В случае использования N отверстий на некой площади, результирующее сопротивление рассчитывается по формуле:θvias = l / (Nvias x k x A).

Надо иметь в виду, что необходимо обеспечить плотное прилегание источника тепла к площадке с металлизированными отверстиями, в противном случае, сопротивление будет увеличиваться в связи с неравномерным распределением тепла . Можно рассчитать общий эквивалент сопротивления в области теплоотводящей площадки светодиода, включающего в себя тепловое сопротивление диэлектрического слоя и металлизированных отверстий . Упрощенно, оба сопротивления рассматриваются как параллельное применение формулы: θvias FR-4 = [ (1/θvias) + (1/θ FR-4) ]

Используя значения, приведенные в таблице 4, для платы размером 270 мм2 с пятью отверстиями Ø 0.6мм тепловое сопротивление приблизительно составит 12 º C / Вт, что значительно лучше по сравнению с первоначальным значением сопротивления той же платы без отверстий - 30 º C / Вт.

Сравнение пустых отверстий и отверстий, залитых припоем

Полое металлизированное отверстие отводит тепло только благодаря тонкому слою меди, нанесенному в процессе металлизации, и имеет более высокое тепловое сопротивление, по сравнению с заполненным припоем. Тепловое сопротивление полого отверстия рассчитывается так:
A = π x (D x t –t-2)
где D диаметр отверстия , а t -толщина покрытия.
Для отверстия диаметром 0.6mm с толщиной омеднения 35 микрон площадь медного колечка покрытия всего 0.06mm2. А если это отверстие будет заполнено припоем, то площадь его вырастет до 0.28mm2 , а тепловое сопротивление уменьшится с 441 º C / Вт до 96,8 º C / Вт соответственно.
Для аналогичной ПП и такого же количества переходных отверстий, но не залитых припоем, как в предыдущем примере, общее тепловое сопротивление будет ~ 28 º C / Вт
Конечно же, увеличение толщины омеднения отверстий при производстве печатных плат улучшит тепловое сопротивление отверстия. Проконсультируйтесь с вашими изготовителями печатных плат, чтобы узнать, какую максимальную толщину металлизации отверстий они смогут обеспечить.
Полые отверстия заполняются припоем во время пайки. Однако, в зависимости от ряда факторов, это заполнение не всегда происходит полностью. И рассчитывать на то, что заполнение улучшит теплоотвод, было бы не совсем неправильно.

Заполнение отверстий

На рис. 6 показан пример некачественной пайки и образовавшихся пустот под запаянным светодиодом (показаны красным). Пустоты увеличивают тепловое сопротивление, а с другой стороны, излишки припоя могут переполнять отверстия, что приведет к неровностям ПП под теплоотводом светодиода и уменьшению площади теплового контакта .
Можно добиться равномерного заполнения отверстий припоем при сверлении отверстий диаметром менее 0,3 мм. В этом случае сила поверхностного натяжения расплавленного припоя внутри отверстия противостоит воздействию силы тяжести, что способствует равномерному распределению припоя. Недостаток этого способа в том, что уменьшение диаметра отверстий приводит и к уменьшению площади тепловых контактов, и как следствие этого- увеличение теплового сопротивления платы.Помимо заполнения припоем во время пайки, можно заполнять отверстия и любыми другими теплопроводящими материалами, например эпоксидными смолами. Но всё это увеличивает время изготовления ПП и увеличивает их стоимость. В общем, CREE выступает за использование полых металлизированных отверстий как более практичную и эффективную технологию, в сравнении с отверстиями, заполняемыми припоем.

Моделирование тепловых характеристик

В этом разделе приведены результаты проведенных тепловых испытаний для ряда конфигураций печатных плат. Первая конфигурация, (рис. 7), ПП в форме звезды из стеклотекстолита FR-4 мм, с различной шириной тепловых площадок , со сплошным нижним слоем фольги, и без тепловых отверстий. Исследовались ПП с толщиной 0,8 мм и 1,6 мм. Результаты измерений приведены на диаграмме 1.
Нажмите на изображение для увеличения
Название: 11.jpg
Просмотров: 747
Размер:	31.3 Кб
ID:	1403
рис.7 - Различная ширина дорожек на ПП «Звезда»
Нажмите на изображение для увеличения
Название: 12.jpg
Просмотров: 820
Размер:	20.8 Кб
ID:	1404
Диаграмма 1 - Тепловое сопротивление ПП FR-4с дорожками различной ширины

Добавление тепловых отверстий

Диаграмма 2 иллюстрирует зависимость теплопроводности от изменения диаметра и количества отверстий. В этом эксперименте все отверстия были заполнены припоем SnAgCu. Как и ожидалось, чем больше диаметр , тем меньше тепловое сопротивление.
Нажмите на изображение для увеличения
Название: 13.jpg
Просмотров: 820
Размер:	40.5 Кб
ID:	1405
Диаграмма 2 - FR-4 PCB с различной конфигурацией диаметров и отверстий


В следующем случае рассматривается влияние количества тепловых отверстий, как показано на рисунке 8.
Эти омедненные отверстия диаметром 0,254 мм расположены на расстоянии 0,635 мм друг от друга. Результаты эксперимента приведены в диаграмме 3 , и показывают, что увеличение числа отверстий более 14 не приведет к существенному уменьшению теплового сопротивления. Очевидно, что это связано с тем, что 14 отверстий- это максимум достижимой плотности на площадке, расположенной под теплоотводящей площадкой светодиода.
Нажмите на изображение для увеличения
Название: 14.jpg
Просмотров: 753
Размер:	41.4 Кб
ID:	1406 рис. 8 - ПП на FR-4 с различным количеством тепловых отверстий (2, 6, 8, 14, 58 и 102)
Нажмите на изображение для увеличения
Название: 15.jpg
Просмотров: 754
Размер:	29.0 Кб
ID:	1407 Диаграмма 3 - Тепловое сопротивление ПП FR-4 с различным количеством тепловых отверстий , и MCPCB

Сочетания увеличения поверхности и количества отверстий

В этом эксперименте исследовались варианты исполнения ПП с 14 отверстиями диаметром 0.25 мм с различной шириной медных дорожек, как показано на рисунке 11. Нижний слой фольги на ПП не просверлен. Данные в таблице 6 показывают, что увеличение ширины дорожки более чем 6 мм не приведет к улучшению теплового сопротивления ПП.

Нажмите на изображение для увеличения
Название: 16.jpg
Просмотров: 790
Размер:	37.0 Кб
ID:	1408 рис. 9 - ПП на FR-4 с 14 тепловыми отверстиями и различной шириной дорожек. (3,3, 4,0, 6,0, 10,0, 14,0, 20,0 мм)
Нажмите на изображение для увеличения
Название: 17.jpg
Просмотров: 743
Размер:	19.0 Кб
ID:	1409 Диаграмма 4 - тепловое сопротивление FR-4 PCB с 14 отверстиями и различной шириной дорожек

Было выяснено также , что изменение ширины нижней дорожки несущественно влияет на общее тепловое сопротивление.

Итоги теплового моделирования

1. Результаты теплового моделирования показывают, что для достижения минимально возможного теплового сопротивления для ПП из FR-4 необходимо использовать стеклотекстолит с толщиной диэлектрика 0,8 мм.
2. При принятии решения о количестве тепловых отверстий с целью уменьшения теплового сопротивления необходимо принимать во внимание стоимость их изготовления. Отверстия большого диаметра могут остаться незаполненными при пайке, что приведет к изменению расчетных тепловых характеристик. Омедненные отверстия малого диаметра являются лучшим решением.
3. Наконец, методы увеличения количества тепловых отверстий и увеличения ширины токопроводящих дорожек в какой-то момент прекращают влиять на уменьшение теплового сопротивления.
Основываясь на этих выводах, инженеры CREE предлагают оптимальный вариант ПП в форме «Звезда» из стеклотекстолита с выверенными размерами дорожек и отверстий, что является следствием компромисса между требованиями по отводу тепла и простотой технологии производства.

Измерения температуры. Проверка

Поскольку температура p-n перехода светодиода влияет на все важнейшие параметры светодиода, CREE рекомендует выполнять проверку тепловых режимов в условиях, максимально приближенных к реальным условиям работы будущего устройства.
В данном разделе приводятся практические результаты измерений тепловых режимов светодиодов, проведенных с помощью термопар. Эти результаты подтверждают теоретические выводы, сделанные выше.
На рис. 10 показана термопара типа K , расположенная на верхней медной токопроводящей дорожке в непосредственной близости к теплоотводу светодиода.

Нажмите на изображение для увеличения
Название: 18.jpg
Просмотров: 863
Размер:	25.1 Кб
ID:	1410
рис. 10 - Размещение термопар

Паяльная маска (если таковая имеется) должна быть удалена, для того чтобы термопара непосредственно прилегала к меди. Если мы используем большее количество светодиодов, то распологаем термопару у светодиода, находящегося в максимально тяжелом тепловом режиме. Вторая термопара hs1 находится на фронтальной поверхности радиатора, непосредственно прилегающего к ПП со светодиодом. Третья термопара hs2 прилагается к тыльной стороне радиатора. Четвертая термопара используется для оценки окружающей среды (воздуха)- она не показана на этом рисунке. В эксперименте измерялись два одинаковых комплекта , через один час после прогрева до нормального теплового режима. Для расчета фактического теплового сопротивления между радиатором и окружающей средой нужно разделить разницу между Ths and Ta . Расчетное значение сопротивления радиатора в этом эксперименте было 14,7 º C / Вт.

Как правило, температура p-n перехода не может быть измерена непосредственно, но это значение может быть вычислено от температуры, измеренной на выводе светодиода, или на ближайшей к выводу точке медной дорожки.
В таблице 5 приводятся данные испытаний двух комплектов светодиодов XLamp XP-C, запаянных на радиатор типа «Звезда». Первый комплект- три светодиода установленых на ПП толщиной 1.6мм из стеклотекстолита типа FR-4 с 5 отверстиями (рис. 11)

Название: 19.jpg
Просмотров: 2578

Размер: 9.8 Кб
рис. 11 - «Звезда» с 5 отверстиями

и второй комплект — три светодиода на ПП толщиной 1.6мм на алюминиевой основе. «Звезды» были приклеены на радиатор клеем Chomerics THERMATTACH® T411 . Измерения проводились при токе 350mA и при температуре окружающей среды (Ta) 20 градусов по Цельсию .

За основу взяты формулы:
P = If * Vf
Tj = Tc + θjc x P
θca = (Tc – Ta) / P
θpcb = θca - θhs-a

Нажмите на изображение для увеличения
Название: 20.jpg
Просмотров: 878
Размер:	81.7 Кб
ID:	1412
табл. 5 - измерение температуры ПП

Видим, что результаты довольно близкие к предсказанным в диаграмме 3 (тепловое сопротивление около 3,5 º C / Вт для MCPCB) и диаграмме 2 (тепловое сопротивление около 9 º C / Вт для ПП на FR-4 с толщиной 1.6мм и пятью отверстиями диаметром 0.7мм, заполненных припоем).

Рекомендуемые методы дизайна печатных плат

Инженеры CREE рекомендуют сверлить области отверстий диаметром 0,254 мм, расположенных по прямоугольной сетке с шагом между центрами 0,635 мм. Они предполагают, что эта технология будет сочетать в себе разумный компромисс между производительностью и технологичностью. Эти отверстия обязательно должны быть омеднёнными.Можно рассчитывать, что такая технология позволит снизить тепловое сопротивление до 4 º C / W при использовании ПП на основе стеклотекстолита толщиной 0,8-мм типа FR-4 .
Для светодиодов серий MX-6 и XP инженеры CREE разработали набор GERBER-файлов для изготовления радиаторов типа «Звезда» на стеклотекстолите типа FR-4. Эти файлы можно свободно скачать с сайта www.cree.com.

Надеемся, что данный материал поможет российским разработчикам и инженерам в успешном применении светодиодов CREE. Инженеры ООО «НЕОН-ЭК» всегда готовы предоставить разработчикам необходимую тех. документацию.





www.powerled.ru
Admin вне форума   Ответить с цитированием Вверх
Поблагодарили: 1 раз
Reyden (17.04.2015)
Старый 14.10.2010, 23:14   2
serj_32
Глобальный модератор
 
Аватар для serj_32
 
Регистрация: 31.05.2010
Последняя активность: 02.01.2023 22:23
Адрес: Украина, Киев
Сообщений: 4464
Записей в дневнике: 44
Сказал(а) спасибо: 357
Поблагодарили: 2428 раз(а) в 816 сообщениях

По умолчанию Re: Расчет печатных плат для светодиодов CREE серий XP и MX

Это все высокие технологии. Оборонные предприятия Украины на 99% работают по старинке, на коленке. Если и используется новая элементная база то про такие расчеты никто и не слышал...
__________________
Обзоры на YouTube - подписывайтесь!
Мы люди мирные, но наш бронепоезд стоит на запасном пути.
serj_32 вне форума   Ответить с цитированием Вверх
Старый 17.04.2015, 13:59   3
Reyden
Ветеран Фонарёвки
 
Аватар для Reyden
 
Регистрация: 29.09.2013
Последняя активность: 25.11.2023 19:08
Адрес: Dnipro
Сообщений: 2922
Сказал(а) спасибо: 579
Поблагодарили: 572 раз(а) в 417 сообщениях

По умолчанию Re: Расчет печатных плат для светодиодов CREE серий XP и MX

Большинство положений взяты из официальных рекомендаций Cree, но с удовольствием еще раз перечитал.

[Исправлено: Reyden, 17.04.2015 в 14:42]
Reyden вне форума   Ответить с цитированием Вверх
Ответ  Создать новую тему





Copyright ©2007 - 2024, FONAREVKA.RU

Powered by vBulletin®
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd. Перевод: zCarot

Правила форума | Отказ от ответственности

Время генерации страницы 0.12865 секунды с 17 запросами